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Abstract—The complexity and the number of mobile malware 

are increasing continually as the usage of smartphones continue 

to rise. The popularity of Android has increased the number of 

malware that target Android-based smartphones.  Developing 

efficient and effective approaches for Android malware 

classification is emerging as a new challenge. This paper 

introduces an effective Android malware classifier based on the 

weighted bipartite graph. This classifier includes two phases: in 

the first phase, the permissions and API Calls used in the 

Android app are utilized to construct the weighted bipartite 

graph; the feature importance scores are integrated as weights in 

the bipartite graph to improve the discrimination between 

malware and goodware apps, by incorporating extra meaningful 

information into the graph structure. The second phase applied 

multiple classifiers to categorise the Android application as a 

malware or goodware. The results using an Android malware 

dataset consists of different malware families, showing the 

effectiveness of our approach toward Android malware 

classification. 
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I. INTRODUCTION 

Smartphones have become increasingly essential part of 
our daily lives, leading to an exponential growth in the 
number of smartphone users. Android is a extensively used 
operating system for smartphones and represents more than 84 
% of the smartphone market in the first quarter of 2016 [1]. 
The new advanced capabilities of the smartphones, coupled 
with the popularity of Android OS, have attracted many 
developers to offer useful applications— commonly called 
apps. The basic market for Android apps is Google Play, also 
several third-party stores are availabe. The number of hosted 
apps on Google Play was around two million apps in February 
2016 [2]. 

The increasing number of both smartphone users and 
available apps has attracted malware developers to design 
malware apps for smartphones. The amount of new Android 
malware apps in 2015 was 884,774; this number has increased 
to more than three times compared to 2014 [3]. As more new 
sophisticated Android malware apps evolve, their detection 
using traditional signature based approaches become more 
challenging. 

Android presented the system of permissions as a potential 
approach to restrict access to user resources. Android apps 
request user approval for permissions to access smartphone 

resources. Thus, the Android permissions have been 
introduced to protect users from malware apps. 

There are many permission-based approaches for Android 
malware detection [4,5,6,7]. However, the existence of some 
permission is not sufficient evidence to classify the App as 
malware, as most of the permissions requested by goodware 
apps are also requested by malware apps. Moreover, the 
permissions stated in the Android-Manifest.xml are not 
necessarily employed by the App [8,9]. Several researches 
considered the API call used in the apps‘ code to differentiate 
between malware and goodware apps [10,11,12,13,14]. 
However, these methods need many API calls for malware 
classification. 

This paper proposes an effective approach for Android app 
classification as malware or goodware using weighted 
bipartite graph mining. The contributions of this research are 
as follows: 

 This paper, shown improved results compared to 
several other approaches for the problem of classifying 
Android malware apps. The carefully crafted weighted 
bipartite graph structure based on Android permissions 
and API calls, combined with the support vector 
machine classifier, achieves better performance and 
discriminates between the goodware and malware apps 
efficiently with low false positive rates. This paper 
aims to utilize both Android permissions and API calls 
in the building of the weighted bipartite graph for 
Android malware classification. 

 This paper introduced the use of the important score of 
Android permissions and API calls as weights in the 
edges of the constructed bipartite graph. This approach 
improves discrimination between malware and 
goodware apps by signifying the association level 
between an Android app and its used features. 

This paper is structured as follows: the related work is 
presented in section 2. The details of the approach for Android 
malware classification based on the weighted bipartite graph 
mining have been discussed in section 3. In Section 4, the 
used data set and results has been discussed. In Section 5, the 
conclusions of our study have been presented. 

II. RELATED WORK 

Dynamic and static approaches are the two main 
approaches for Android malware analysis [15]. In the dynamic 
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approach, the required features are monitored and collected 
during the running of Android app in a mobile device or 
emulator. Examples for the features extracted dynamically 
include SMS and call information [16], and logs of the system 
[17]. In the static approach, the features of Android app are 
extracted from the decompiled Android Dalvik bytecode. API 
calls and permissions features could be extracted statically 
.Felt et al. [4] proposed a tool that provides a list of expected 
permissions for the application, and then it compares them 
with the really requested permissions. In [18], authors 
proposed Kirin which is a security service to protect the 
smartphone. The dangerous permissions requested by the app 
are formulated as rules in Kirin. During the installation of the 
app, if the requested permissions do not satisfy the security 
rules of Kirin, the installation of the app is disallowed. Sanz et 
al. [19,20] introduced an approach for Android malware 
categorization  based on the user features and the permissions 
available in the AndroidManifest.xml. In the proposed 
approach, they employed several machine learning algorithms 
using a dataset contains 357 goodware and 249 malware apps; 
the achieved classification accuracy was 86%. [21] used the 
matches of the requested permissions and the behavioural 
characteristics, such as the method of installation,  to detect 
Android malware. 

Analysing the system calls for Android malware detection 
is another research area. Schmidt et al. [22] obtained the 
system calls from the Android Apk file and matched them 
with the system calls used in malware apps to classify apps as 
either malware or goodware apps. Crowdroid [17] is a client 
server model for Android malware detection; the clients 
collect the system calls from the Android app and send them 
to the server for classification using clustering algorithms. In 
DroidAPIminer [23], different classifiers used to discriminate 
between goodware and malware apps based on feature sets 
consisting of API calls. 

Andromaly [24] used anomaly detection techniques to 
classify the malware apps by monitoring different system 
Metrics. Bartel et al. [25] found that several Android apps 
declare permissions in their AndroidMainfest.xml file but 
those permissions are never used. Thus, exploring the 
permissions only in the manifest file may not provide accurate 
classification of malware apps. All the API calls used in an 
Android app are associated with corresponding permissions; 
therefore when an API call starts, the Android OS verifies the 
approval of its associated permission before executing it.   
Good Android malware classification results can be achieved 
by using features combination approach. [24] Showed that 
higher accuracy of malware detection can be attained when 
combing the permission and API Calls. Grace et al. [9] 
proposed a method using data and control-flow as static 
features that give 9% False Negative (FN). 

Our work differs from the aforementioned works in that, 
this paper  presents an effective classifier for Android 
malware using the weighted bipartite graph; the permissions 
and API Calls used in the Android app are utilized to construct 
the weighted bipartite graph, and to understand the benefits of 
incorporating additional meaningful information into the 
graph structure.  Moreover, we employed a classification 
method based on efficient classifiers. 

 
Fig. 1. The proposed approach for Android malware classification 

III. ANDROID MALWARE CLASSIFICATION BASED ON 

WEIGHTED BIPARTITE GRAPH 

In this section, the proposed approach for Android 
malware classification is discussed. As shown in Figure 1, the 
proposed approach includes the following steps: 

A. Behavior Graph Construction 

First, the features extracted from the Android app to 
differentiate between goodware and malware apps were 
presented; then the method how these features are used to 
construct the weighted bipartite graph is described. 

1) Android app Features 
Using the most informative features, which represent the 

basic characteristics of Android apps, has significant impact 
on the classification accuracy. In this research, the Android 
API calls and permissions are obtained from the Android app 
files using apktool [26] and utilized as features for the 
categorization of Android apps as malware or goodware apps. 

a) Android Permissions 

Android introduced Permissions as a potential mechanism 
for security. Basically, no Application is permitted to perform 
any activity that affects the users. The applications can share 
data and resources by explicitly declaring the permissions in 
the application file. Therefore, the permissions based features 
are important features for analysing the Android apps [27]. 
Before the Android app is installed, Android shows the user 
the permissions needed by the app; Figure 2 shows examples 
for permissions stated in the Manifest.xml file of the bgserv 
malware application. 

b) API Calls 

It is a collection of defined functions and methods that 
enables the apps to communicate with each other and with the 
Android OS. For efferent classification of Android malware 
app, it is most important to focus on the APIs that frequently 
used by the malware, instead of considering all API calls in 
the app. Seo et al. [28] explored malware apps and specified 
the suspicious API calls that malware apps frequently use. 
They compared the frequency of using suspicious API calls in 
malware and goodware apps. The API calls extracted 
manually, which are similar to the suspicious API calls 
defined in [28], from the Android app. These API calls 
perform tasks such as gathering the information of the user or 
device, websites‘ accessibility, receiving and sending SMS, 
and app installation. 
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2) Bipartite Graph Construction 
The weighted bipartite graph G ={V,U, E} contains a set 

of vertices V ={v1, v2, ...., vn}, a set of vertices 
U={u1,u2,…,un} and a set of edges E={eij | edge between vi 
and uj, i, j <= n}, where n denotes the vertices number. The 
edge E is linked with a weight w: E→R, where R represents 
the set of real NUMBERS. The vertices are elements of interest 
and relationships between the elements are represented by the 
edges. In this research, the V set of vertices in the constructed 
bipartite graph represents the Android apps and the other set 
of vertices U represents the permissions and API Calls used in 
the Android app.  Because the weights can reflect potential 
systems properties [29], we integrated the features importance 
scores as edge weights to improve the discrimination between 
the malware and goodware apps, by signifying the association 
level between the Android app and the used features. 

Information Gain Ratio algorithm finds the similarity score 
between the Android permissions and API calls; this algorithm 
then provides the highest weight  value to the significant  
permissions and API calls considering the class of goodware 
and malware Android applications [30]. 

 
Fig. 2. Example for AndroidManifest.xml file 

The information gain ratio is calculated using the 
following equations: 

   n_r(eij, C)  
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Where, gain r (eij,C) indicates the gain ratio of the feature 
eij regularity in the class C. Ci and |Ci| indicate the regularity 
of feature Z in class C, the subclass i of C and the total 
number of features in Ci. Let W(eij) be the  weight matrix of 

the bipartite graph G, for each edge eij the weight W (eij) can 
be computed using the information Gain algorithm as follows: 
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B. The algorithm used for graph-based vector classification 

A support vector machine is an efficient machine learning 
technique for classification [31]. It finds a decision boundary 
with the closest training patterns and classify new patterns 
based on the decision boundary. The SVM algorithm has a 
number of advantages, which are significantly important for 
the classification of Android apps. For example, it has the 
ability to handle large feature spaces and robust to overfitting 
spaces. In this paper, four SVM kernel functions: polynomial, 
linear, radial basis functions  and sigmpoid, as well as the 
state-of-the-art algorithm for learning linear SVM Stegasos 
[32] were used for graph-based vector classification. 

IV. EXPERIMENTAL RESULTS 

The experimental results and performance evaluation of 
the proposed Android malware classification based on 
weighted bipartite graph mining are presented in this section. 

A. Data Set 

To assess the proposed classifier‘s performance, we 
conducted experiments based on dataset contains 250 malware 
apps and 250 goodware apps. The goodware apps have been 
sourced from the well-known market for Android applications, 
Google play; the malware apps from the Android Malware 
Genome Project [33]. 

B.  Performance metrics 

We used the following metrics for evaluating the proposed 
approach for Android malware classification: 

True Positive Ratio (TPR):  the ratio of Android malware 
apps that were classified correctly as malware apps. 

    
  

     
     (4) 

Where TP represents the malware apps which classified 
correctly and FN represents the malware apps which 
incorrectly classified as goodware apps. 

True Negative Ratio (TNR): is the ratio of goodware apps 
that were classified correctly as goodware apps. 

    
  

     
     (5) 

where TN represents  the goodware apps which correctly 
classified as goodware and FP represents  the goodware apps 
which incorrectly classified  as malware apps. 

Accuracy: the ratio of malware apps which classified 
correctly as malware apps: 

             
  

     
                         (6) 
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TABLE. I. SAMPLE FROM THE WEIGHT MATRIX OF ANDROID APP 

BIPARTITE GRAPH 
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App1 0.2746 0.2529 0.2366 0.0776 0.0414 

App2 0 0 0 0 0 

App3 0.2746 0.2529 0.2366 0.0776 0.0414 

App4 0.2746 0 0.2366 0.0776 0.0414 

App5 0.2746 0 0.2366 0.0776 0 

App6 0.2746 0 0.2366 0.0776 0.0414 

App7 0.2746 0.2529 0.2366 0.0776 0.0414 

App8 0.2746 0 0.2366 0.0776 0 

App9 0.2746 0 0.2366 0.0776 0 

App10 0.2746 0.2529 0.2366 0.0776 0 

App11 0.2746 0.2529 0.2366 0.0776 0 

App12 0.2746 0 0.2366 0.0776 0.0414 

App13 0.2746 0 0.2366 0.0776 0.0414 

App14 0.2746 0.2529 0.2366 0.0776 0.0414 

App15 0.2746 0.2529 0.2366 0.0776 0.0414 

App16 0.2746 0.2529 0.2366 0.0776 0.0414 

App17 0.2746 0 0.2366 0.0776 0.0414 

App18 0.2746 0.2529 0.2366 0.0776 0.0414 

App19 0.2746 0.2529 0.2366 0.0776 0.0414 

App20 0.2746 0.2529 0.2366 0.0776 0.0414 

C. Results and Discussion 

The dataset described in section 5.2 is utilized to 
investigate the performance of the introduced classifier for 
Android malware based on the 10-fold cross validation. The 
dataset of goodware and malware apps is randomly divided 
into 10 groups. Each time, we choose one group consisting of 
goodware and malware apps as dataset for testing, and the rest 
9 groups are used as dataset for training. 

The Android permissions and API calls were extracted 
from each Android app in the dataset and used to construct the 
bipartite graph. The important scores of the Android 
permissions and API calls for discrimination between malware 
and goodware apps were computed based on the Information 
gain method and used as weights in the constructed bipartite 
graph. 

From the weighed bipartite graph of Android app depicted 
in Table 1, we can gain additional insights into the behaviour 

of Android malware. READ_PHONE_STATE permission is 
the most discriminative feature between the malware and 
goodware apps; this permission is essential to get the phone 
identification information such as device ID. This permission 
is also required by malware apps that attempt to achieve a 
financial gain by sending the phone number to a charged 
service. The second most discriminative feature is 
RECEIVE_BOOT_COMPLETED permission. This feature is 
used by a malware app to execute background services 
without the user‘s interference. 
SYSTEM_ALERT_WINDOW permission permits the app to   
display a window; malware developers could use the 
SYSTEM_ALERT_WINDOW permission to popup a window 
to evade the user and steal sensitive information. 

The applications that are part of the Android operating 
system only need the SYSTEM_ALERT_WINDOW 
permission; an example for the alert window is the window 
shown when the smartphone is out of battery. 

In the experiment, different SVM variants were adopted to 
categorize the Android apps as malware or goodware apps. 
The performance of our classifier is evaluated by computing 
the precision, true positive rate and false positive rate as 
explained in Table 2. 

TABLE. II. PERFORMANCE EVALUATION OF DIFFERENT SVM CLASSIFIERS  

 

Table 2 shows the performance of variant types of SVM 
kernel functions. It is clear from Table 2 that the Pegasos-
SVM classifier achieves the highest precision of 0.940 % with 
a minimum false positive rate of 0.062.  Pegasos-SVM 
outperforms all other SVM kernel functions due to its 
significantly better convergence bounds. The polynomial 
SVM kernel function achieved the lowest precision of 0.803 
with the highest false positive rate of 0.240. 

The Receiver Operating Characteristics (ROC) is also 
utilized to compare between the different approaches. ROC 
compares the performance of different classifiers using the 
false positive rates and true positive rates. In the ROC graph, 
the true positive rate is displayed on the Y axis and the false 
positive rate is displayed on the X axis. To evaluate the 
classifiers performance, the area under the ROC curve (AUC) 
[39] is used. The AUC value is in the range [0.5, 1]. The 
accuracy of the classifier is 100% when AUC = 1. 
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Fig. 3. The RUC curves for the Pegasos-SVM, Linear -SVM, Radial basis 

function -SVM, Sigmoid –SVM and Polynomial -SVM classifiers 

Figure 3 shows the RUC curves for the Pegasos-SVM, 
Linear -SVM, Radial basis function -SVM, Sigmoid –SVM 
and Polynomial -SVM classifers. The AUC results confirm 
that the Pegasos-SVM classifier‘s area under the curve 
(AUC=0.940) is greater than all the other classifiers, namely, 
Linear -SVM (AUC=0.900), Radial basis function-
SVM(AUC=0.888), Sigmoid–SVM(AUC=0.760)  and 
Polynomial -SVM(AUC=0.668). 

Figure 4 shows the performance comparison between the 
proposed approach based on Pegasos-VM and the Naïve 
bayes, Neural network and Decision table respectively. It is 
clear from Figure 4 that the proposed approach outperforms 
the classification algorithms: Naïve Bayes, Neural network 
and Decision table. The proposed approach based on Pegasos-
VM achieved the highest precision of 0.941 with a minimum 
false positive rate of 0.06. 

 
Fig. 4. Performance comparison between the proposed approach based on 

Pegasos-VM and Naïve bayes, Neural network and Decision table 

classification algorithms 

The proposed classifier‘s performance is compared with 
other approaches as shown in Table 3. The results clearly 
show that the proposed approach achieved an improved 
accuracy level of Android malware classification with a 

minimum false positive rate of 6% compared with other 
approaches. The proposed approach has the capability to 
integrate the importance scores of Android permissions and 
API calls as weights in the bipartite graph to improve 
discrimination between the malware and goodware apps, so 
that it achieves the minimum false positive rate. 

TABLE. III. PERFORMANCE EVALUATION OF THE PROPOSED CLASSIFIER 

AND OTHER APPROACHES 

 

V. CONCLUSION 

Developing efficient and effective approaches for Android 
malware classification is emerging as a new challenge. This 
paper, introduces a classifier for Android malware based on 
the analysis of a weighted bipartite graph constructed from the 
Android API calls and permissions. The   importance scores of 
the Android API calls and permissions are integrated as 
weights in the bipartite graph to improve the discrimination 
between the malware and goodware apps. The graph-based 
feature vector is constructed from the weighted bipartite graph 
sent to a support vector machine to categorize the Android 
apps as malware or goodware apps. The results show a 
significant improvement over other malware classification 
approaches. 

For future work, more advanced classification techniques 
will be considered to detect advanced Zero-day malware 
attacks. 
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