
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

81 | P a g e

www.ijacsa.thesai.org

Using Weighted Bipartite Graph for Android Malware

Classification

Altyeb Altaher

Faculty of Computing and Information Technology in Rabigh

King Abdulaziz University

Jeddah, Saudi Arabia

Abstract—The complexity and the number of mobile malware

are increasing continually as the usage of smartphones continue

to rise. The popularity of Android has increased the number of

malware that target Android-based smartphones. Developing

efficient and effective approaches for Android malware

classification is emerging as a new challenge. This paper

introduces an effective Android malware classifier based on the

weighted bipartite graph. This classifier includes two phases: in

the first phase, the permissions and API Calls used in the

Android app are utilized to construct the weighted bipartite

graph; the feature importance scores are integrated as weights in

the bipartite graph to improve the discrimination between

malware and goodware apps, by incorporating extra meaningful

information into the graph structure. The second phase applied

multiple classifiers to categorise the Android application as a

malware or goodware. The results using an Android malware

dataset consists of different malware families, showing the

effectiveness of our approach toward Android malware

classification.

Keywords—Android malware; Bipartite graph; Classification

algorithms; machine learning

I. INTRODUCTION

Smartphones have become increasingly essential part of
our daily lives, leading to an exponential growth in the
number of smartphone users. Android is a extensively used
operating system for smartphones and represents more than 84
% of the smartphone market in the first quarter of 2016 [1].
The new advanced capabilities of the smartphones, coupled
with the popularity of Android OS, have attracted many
developers to offer useful applications— commonly called
apps. The basic market for Android apps is Google Play, also
several third-party stores are availabe. The number of hosted
apps on Google Play was around two million apps in February
2016 [2].

The increasing number of both smartphone users and
available apps has attracted malware developers to design
malware apps for smartphones. The amount of new Android
malware apps in 2015 was 884,774; this number has increased
to more than three times compared to 2014 [3]. As more new
sophisticated Android malware apps evolve, their detection
using traditional signature based approaches become more
challenging.

Android presented the system of permissions as a potential
approach to restrict access to user resources. Android apps
request user approval for permissions to access smartphone

resources. Thus, the Android permissions have been
introduced to protect users from malware apps.

There are many permission-based approaches for Android
malware detection [4,5,6,7]. However, the existence of some
permission is not sufficient evidence to classify the App as
malware, as most of the permissions requested by goodware
apps are also requested by malware apps. Moreover, the
permissions stated in the Android-Manifest.xml are not
necessarily employed by the App [8,9]. Several researches
considered the API call used in the apps‘ code to differentiate
between malware and goodware apps [10,11,12,13,14].
However, these methods need many API calls for malware
classification.

This paper proposes an effective approach for Android app
classification as malware or goodware using weighted
bipartite graph mining. The contributions of this research are
as follows:

 This paper, shown improved results compared to
several other approaches for the problem of classifying
Android malware apps. The carefully crafted weighted
bipartite graph structure based on Android permissions
and API calls, combined with the support vector
machine classifier, achieves better performance and
discriminates between the goodware and malware apps
efficiently with low false positive rates. This paper
aims to utilize both Android permissions and API calls
in the building of the weighted bipartite graph for
Android malware classification.

 This paper introduced the use of the important score of
Android permissions and API calls as weights in the
edges of the constructed bipartite graph. This approach
improves discrimination between malware and
goodware apps by signifying the association level
between an Android app and its used features.

This paper is structured as follows: the related work is
presented in section 2. The details of the approach for Android
malware classification based on the weighted bipartite graph
mining have been discussed in section 3. In Section 4, the
used data set and results has been discussed. In Section 5, the
conclusions of our study have been presented.

II. RELATED WORK

Dynamic and static approaches are the two main
approaches for Android malware analysis [15]. In the dynamic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

82 | P a g e

www.ijacsa.thesai.org

approach, the required features are monitored and collected
during the running of Android app in a mobile device or
emulator. Examples for the features extracted dynamically
include SMS and call information [16], and logs of the system
[17]. In the static approach, the features of Android app are
extracted from the decompiled Android Dalvik bytecode. API
calls and permissions features could be extracted statically
.Felt et al. [4] proposed a tool that provides a list of expected
permissions for the application, and then it compares them
with the really requested permissions. In [18], authors
proposed Kirin which is a security service to protect the
smartphone. The dangerous permissions requested by the app
are formulated as rules in Kirin. During the installation of the
app, if the requested permissions do not satisfy the security
rules of Kirin, the installation of the app is disallowed. Sanz et
al. [19,20] introduced an approach for Android malware
categorization based on the user features and the permissions
available in the AndroidManifest.xml. In the proposed
approach, they employed several machine learning algorithms
using a dataset contains 357 goodware and 249 malware apps;
the achieved classification accuracy was 86%. [21] used the
matches of the requested permissions and the behavioural
characteristics, such as the method of installation, to detect
Android malware.

Analysing the system calls for Android malware detection
is another research area. Schmidt et al. [22] obtained the
system calls from the Android Apk file and matched them
with the system calls used in malware apps to classify apps as
either malware or goodware apps. Crowdroid [17] is a client
server model for Android malware detection; the clients
collect the system calls from the Android app and send them
to the server for classification using clustering algorithms. In
DroidAPIminer [23], different classifiers used to discriminate
between goodware and malware apps based on feature sets
consisting of API calls.

Andromaly [24] used anomaly detection techniques to
classify the malware apps by monitoring different system
Metrics. Bartel et al. [25] found that several Android apps
declare permissions in their AndroidMainfest.xml file but
those permissions are never used. Thus, exploring the
permissions only in the manifest file may not provide accurate
classification of malware apps. All the API calls used in an
Android app are associated with corresponding permissions;
therefore when an API call starts, the Android OS verifies the
approval of its associated permission before executing it.
Good Android malware classification results can be achieved
by using features combination approach. [24] Showed that
higher accuracy of malware detection can be attained when
combing the permission and API Calls. Grace et al. [9]
proposed a method using data and control-flow as static
features that give 9% False Negative (FN).

Our work differs from the aforementioned works in that,
this paper presents an effective classifier for Android
malware using the weighted bipartite graph; the permissions
and API Calls used in the Android app are utilized to construct
the weighted bipartite graph, and to understand the benefits of
incorporating additional meaningful information into the
graph structure. Moreover, we employed a classification
method based on efficient classifiers.

Fig. 1. The proposed approach for Android malware classification

III. ANDROID MALWARE CLASSIFICATION BASED ON

WEIGHTED BIPARTITE GRAPH

In this section, the proposed approach for Android
malware classification is discussed. As shown in Figure 1, the
proposed approach includes the following steps:

A. Behavior Graph Construction

First, the features extracted from the Android app to
differentiate between goodware and malware apps were
presented; then the method how these features are used to
construct the weighted bipartite graph is described.

1) Android app Features
Using the most informative features, which represent the

basic characteristics of Android apps, has significant impact
on the classification accuracy. In this research, the Android
API calls and permissions are obtained from the Android app
files using apktool [26] and utilized as features for the
categorization of Android apps as malware or goodware apps.

a) Android Permissions

Android introduced Permissions as a potential mechanism
for security. Basically, no Application is permitted to perform
any activity that affects the users. The applications can share
data and resources by explicitly declaring the permissions in
the application file. Therefore, the permissions based features
are important features for analysing the Android apps [27].
Before the Android app is installed, Android shows the user
the permissions needed by the app; Figure 2 shows examples
for permissions stated in the Manifest.xml file of the bgserv
malware application.

b) API Calls

It is a collection of defined functions and methods that
enables the apps to communicate with each other and with the
Android OS. For efferent classification of Android malware
app, it is most important to focus on the APIs that frequently
used by the malware, instead of considering all API calls in
the app. Seo et al. [28] explored malware apps and specified
the suspicious API calls that malware apps frequently use.
They compared the frequency of using suspicious API calls in
malware and goodware apps. The API calls extracted
manually, which are similar to the suspicious API calls
defined in [28], from the Android app. These API calls
perform tasks such as gathering the information of the user or
device, websites‘ accessibility, receiving and sending SMS,
and app installation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

83 | P a g e

www.ijacsa.thesai.org

2) Bipartite Graph Construction
The weighted bipartite graph G ={V,U, E} contains a set

of vertices V ={v1, v2,, vn}, a set of vertices
U={u1,u2,…,un} and a set of edges E={eij | edge between vi
and uj, i, j <= n}, where n denotes the vertices number. The
edge E is linked with a weight w: E→R, where R represents
the set of real NUMBERS. The vertices are elements of interest
and relationships between the elements are represented by the
edges. In this research, the V set of vertices in the constructed
bipartite graph represents the Android apps and the other set
of vertices U represents the permissions and API Calls used in
the Android app. Because the weights can reflect potential
systems properties [29], we integrated the features importance
scores as edge weights to improve the discrimination between
the malware and goodware apps, by signifying the association
level between the Android app and the used features.

Information Gain Ratio algorithm finds the similarity score
between the Android permissions and API calls; this algorithm
then provides the highest weight value to the significant
permissions and API calls considering the class of goodware
and malware Android applications [30].

Fig. 2. Example for AndroidManifest.xml file

The information gain ratio is calculated using the
following equations:

 n_r(eij, C)

 (1)

 =∑ (
| |

| |
)

| |

| |
 (2)

Where, gain r (eij,C) indicates the gain ratio of the feature
eij regularity in the class C. Ci and |Ci| indicate the regularity
of feature Z in class C, the subclass i of C and the total
number of features in Ci. Let W(eij) be the weight matrix of

the bipartite graph G, for each edge eij the weight W (eij) can
be computed using the information Gain algorithm as follows:

 () {
 ()

B. The algorithm used for graph-based vector classification

A support vector machine is an efficient machine learning
technique for classification [31]. It finds a decision boundary
with the closest training patterns and classify new patterns
based on the decision boundary. The SVM algorithm has a
number of advantages, which are significantly important for
the classification of Android apps. For example, it has the
ability to handle large feature spaces and robust to overfitting
spaces. In this paper, four SVM kernel functions: polynomial,
linear, radial basis functions and sigmpoid, as well as the
state-of-the-art algorithm for learning linear SVM Stegasos
[32] were used for graph-based vector classification.

IV. EXPERIMENTAL RESULTS

The experimental results and performance evaluation of
the proposed Android malware classification based on
weighted bipartite graph mining are presented in this section.

A. Data Set

To assess the proposed classifier‘s performance, we
conducted experiments based on dataset contains 250 malware
apps and 250 goodware apps. The goodware apps have been
sourced from the well-known market for Android applications,
Google play; the malware apps from the Android Malware
Genome Project [33].

B. Performance metrics

We used the following metrics for evaluating the proposed
approach for Android malware classification:

True Positive Ratio (TPR): the ratio of Android malware
apps that were classified correctly as malware apps.

 (4)

Where TP represents the malware apps which classified
correctly and FN represents the malware apps which
incorrectly classified as goodware apps.

True Negative Ratio (TNR): is the ratio of goodware apps
that were classified correctly as goodware apps.

 (5)

where TN represents the goodware apps which correctly
classified as goodware and FP represents the goodware apps
which incorrectly classified as malware apps.

Accuracy: the ratio of malware apps which classified
correctly as malware apps:

 (6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

84 | P a g e

www.ijacsa.thesai.org

TABLE. I. SAMPLE FROM THE WEIGHT MATRIX OF ANDROID APP

BIPARTITE GRAPH

R
ea

d
_P

h
o

n
e_

St
at

e

Sy
st

em
_A

le
rt

_W
in

d

o
w

R
ec

ei
ve

_B
o

o
t_

C
o

m

p
le

te
d

In
te

rn
et

W
ri

te
_E

xt
er

n
al

_S
to

r

ag
e

App1 0.2746 0.2529 0.2366 0.0776 0.0414

App2 0 0 0 0 0

App3 0.2746 0.2529 0.2366 0.0776 0.0414

App4 0.2746 0 0.2366 0.0776 0.0414

App5 0.2746 0 0.2366 0.0776 0

App6 0.2746 0 0.2366 0.0776 0.0414

App7 0.2746 0.2529 0.2366 0.0776 0.0414

App8 0.2746 0 0.2366 0.0776 0

App9 0.2746 0 0.2366 0.0776 0

App10 0.2746 0.2529 0.2366 0.0776 0

App11 0.2746 0.2529 0.2366 0.0776 0

App12 0.2746 0 0.2366 0.0776 0.0414

App13 0.2746 0 0.2366 0.0776 0.0414

App14 0.2746 0.2529 0.2366 0.0776 0.0414

App15 0.2746 0.2529 0.2366 0.0776 0.0414

App16 0.2746 0.2529 0.2366 0.0776 0.0414

App17 0.2746 0 0.2366 0.0776 0.0414

App18 0.2746 0.2529 0.2366 0.0776 0.0414

App19 0.2746 0.2529 0.2366 0.0776 0.0414

App20 0.2746 0.2529 0.2366 0.0776 0.0414

C. Results and Discussion

The dataset described in section 5.2 is utilized to
investigate the performance of the introduced classifier for
Android malware based on the 10-fold cross validation. The
dataset of goodware and malware apps is randomly divided
into 10 groups. Each time, we choose one group consisting of
goodware and malware apps as dataset for testing, and the rest
9 groups are used as dataset for training.

The Android permissions and API calls were extracted
from each Android app in the dataset and used to construct the
bipartite graph. The important scores of the Android
permissions and API calls for discrimination between malware
and goodware apps were computed based on the Information
gain method and used as weights in the constructed bipartite
graph.

From the weighed bipartite graph of Android app depicted
in Table 1, we can gain additional insights into the behaviour

of Android malware. READ_PHONE_STATE permission is
the most discriminative feature between the malware and
goodware apps; this permission is essential to get the phone
identification information such as device ID. This permission
is also required by malware apps that attempt to achieve a
financial gain by sending the phone number to a charged
service. The second most discriminative feature is
RECEIVE_BOOT_COMPLETED permission. This feature is
used by a malware app to execute background services
without the user‘s interference.
SYSTEM_ALERT_WINDOW permission permits the app to
display a window; malware developers could use the
SYSTEM_ALERT_WINDOW permission to popup a window
to evade the user and steal sensitive information.

The applications that are part of the Android operating
system only need the SYSTEM_ALERT_WINDOW
permission; an example for the alert window is the window
shown when the smartphone is out of battery.

In the experiment, different SVM variants were adopted to
categorize the Android apps as malware or goodware apps.
The performance of our classifier is evaluated by computing
the precision, true positive rate and false positive rate as
explained in Table 2.

TABLE. II. PERFORMANCE EVALUATION OF DIFFERENT SVM CLASSIFIERS

Table 2 shows the performance of variant types of SVM
kernel functions. It is clear from Table 2 that the Pegasos-
SVM classifier achieves the highest precision of 0.940 % with
a minimum false positive rate of 0.062. Pegasos-SVM
outperforms all other SVM kernel functions due to its
significantly better convergence bounds. The polynomial
SVM kernel function achieved the lowest precision of 0.803
with the highest false positive rate of 0.240.

The Receiver Operating Characteristics (ROC) is also
utilized to compare between the different approaches. ROC
compares the performance of different classifiers using the
false positive rates and true positive rates. In the ROC graph,
the true positive rate is displayed on the Y axis and the false
positive rate is displayed on the X axis. To evaluate the
classifiers performance, the area under the ROC curve (AUC)
[39] is used. The AUC value is in the range [0.5, 1]. The
accuracy of the classifier is 100% when AUC = 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

85 | P a g e

www.ijacsa.thesai.org

Fig. 3. The RUC curves for the Pegasos-SVM, Linear -SVM, Radial basis

function -SVM, Sigmoid –SVM and Polynomial -SVM classifiers

Figure 3 shows the RUC curves for the Pegasos-SVM,
Linear -SVM, Radial basis function -SVM, Sigmoid –SVM
and Polynomial -SVM classifers. The AUC results confirm
that the Pegasos-SVM classifier‘s area under the curve
(AUC=0.940) is greater than all the other classifiers, namely,
Linear -SVM (AUC=0.900), Radial basis function-
SVM(AUC=0.888), Sigmoid–SVM(AUC=0.760) and
Polynomial -SVM(AUC=0.668).

Figure 4 shows the performance comparison between the
proposed approach based on Pegasos-VM and the Naïve
bayes, Neural network and Decision table respectively. It is
clear from Figure 4 that the proposed approach outperforms
the classification algorithms: Naïve Bayes, Neural network
and Decision table. The proposed approach based on Pegasos-
VM achieved the highest precision of 0.941 with a minimum
false positive rate of 0.06.

Fig. 4. Performance comparison between the proposed approach based on

Pegasos-VM and Naïve bayes, Neural network and Decision table

classification algorithms

The proposed classifier‘s performance is compared with
other approaches as shown in Table 3. The results clearly
show that the proposed approach achieved an improved
accuracy level of Android malware classification with a

minimum false positive rate of 6% compared with other
approaches. The proposed approach has the capability to
integrate the importance scores of Android permissions and
API calls as weights in the bipartite graph to improve
discrimination between the malware and goodware apps, so
that it achieves the minimum false positive rate.

TABLE. III. PERFORMANCE EVALUATION OF THE PROPOSED CLASSIFIER

AND OTHER APPROACHES

V. CONCLUSION

Developing efficient and effective approaches for Android
malware classification is emerging as a new challenge. This
paper, introduces a classifier for Android malware based on
the analysis of a weighted bipartite graph constructed from the
Android API calls and permissions. The importance scores of
the Android API calls and permissions are integrated as
weights in the bipartite graph to improve the discrimination
between the malware and goodware apps. The graph-based
feature vector is constructed from the weighted bipartite graph
sent to a support vector machine to categorize the Android
apps as malware or goodware apps. The results show a
significant improvement over other malware classification
approaches.

For future work, more advanced classification techniques
will be considered to detect advanced Zero-day malware
attacks.

ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, Saudi
Arabia, under Grant No. (830-863-D1435). The author,
therefore, gratefully acknowledges the DSR technical and
financial support.

REFERENCES

[1] GARTNER, ―Gartner Says Worldwide Smartphone Sales Grew 3.9
Percent in First Quarter of 2016‖
http://www.gartner.com/newsroom/id/3323017

[2] Statista,‖ number of available applications in the google play store‖
http://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

[3] Kaspersky, ―The Volume of New Mobile Malware Tripled in 2015―
http://www.kaspersky.com/about/news/virus/2016/The_Volume_of_Ne
w_Mobile_Malware_Tripled_in_2015

0 0.2 0.4 0.6 0.8 1

Naïve Bays

Neural Network

Decision Table

Our proposed
approach(Pegasos-SVM)

Precision False Positive True Positive

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

86 | P a g e

www.ijacsa.thesai.org

[4] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. "Android permissions demystified." In Proceedings of the 18th
ACM conference on Computer and communications security, pp. 627-
638. ACM, 2011.

[5] Aung, Zarni, and Win Zaw. "Permission-based android malware
detection."International Journal of Scientific and Technology Research
2, no. 3,pp. 228-234, 2013

[6] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, ―Performance Evaluation on
Permission-Based Detection for Android Malware‖ in Advances in
Intelligent Systems and Applications-Volume 2, pp. 111–120, Springer,
2013.

[7] Liu, Xing, and Jiqiang Liu. "A two-layered permission-based android
malware detection scheme." In Mobile Cloud Computing, Services, and
Engineering (MobileCloud), 2014 2nd IEEE International Conference
on, pp. 142-148. IEEE, 2014.

http://dx.doi.org/10.1109/mobilecloud.2014.22

[8] Sharma, Akanksha, and Subrat Kumar Dash. "Mining api calls and
permissions for android malware detection." In International Conference
on Cryptology and Network Security, pp. 191-205. Springer
International Publishing, 2014.

[9] Grace, Michael C., Yajin Zhou, Zhi Wang, and Xuxian Jiang.
"Systematic Detection of Capability Leaks in Stock Android
Smartphones." In NDSS, vol. 14, p. 19. 2012.

[10] Aafer, Yousra, Wenliang Du, and Heng Yin. "DroidAPIMiner: Mining
API-level features for robust malware detection in android." In
International Conference on Security and Privacy in Communication
Systems, pp. 86-103. Springer International Publishing, 2013.

[11] Zhang, Mu, Yue Duan, Heng Yin, and Zhiruo Zhao. "Semantics-aware
android malware classification using weighted contextual api
dependency graphs." In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1105-1116.
ACM, 2014.

[12] Huang, Jianjun, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang.
"AsDroid: detecting stealthy behaviors in Android applications by user
interface and program behavior contradiction." In Proceedings of the
36th International Conference on Software Engineering, pp. 1036-1046.
ACM, 2014.

[13] Yerima, Suleiman Y., Sakir Sezer, Gavin McWilliams, and Igor Muttik.
"A new android malware detection approach using bayesian
classification." InAdvanced Information Networking and Applications
(AINA), 2013 IEEE 27th International Conference on, pp. 121-128.
IEEE, 2013.

[14] Feng, Y., Anand, S., Dillig, I. and Aiken, A. Apposcopy: Semantics-
based detection of android malware through static analysis.
InProceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 576-587). ACM, 2014.

[15] Egele, Manuel, Theodoor Scholte, Engin Kirda, and Christopher
Kruegel. "A survey on automated dynamic malware-analysis techniques
and tools." ACM Computing Surveys (CSUR) 44, no. 2 (2012): 6.

[16] Lindorfer, Martina, Matthias Neugschwandtner, Lukas Weichselbaum,
Yanick Fratantonio, Victor Van Der Veen, and Christian Platzer.
"Andrubis--1,000,000 apps later: A view on current Android malware
behaviors." In2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS),
pp. 3-17. IEEE, 2014.

[17] Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani. "Crowdroid:
behavior-based malware detection system for android." In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pp. 15-26. ACM, 2011.

[18] Enck, William, Machigar Ongtang, and Patrick McDaniel. "On
lightweight mobile phone application certification." In Proceedings of
the 16th ACM conference on Computer and communications security,
pp. 235-245. ACM, 2009.

[19] Sanz, Borja, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo
Garcia Bringas, and Gonzalo Álvarez. "Puma: Permission usage to
detect malware in android." In International Joint Conference CISIS‘12-
ICEUTE´ 12-SOCO´ 12 Special Sessions, pp. 289-298. Springer Berlin
Heidelberg, 2013.

[20] B.Sanz, I.Santos, C.Laorden, X.Ugarte-Pedrero, J.Nieves, P.G.Bringas,
G.Álvare Maran n, MAMA manifest analysis for malware detection in
android, Cybern. Syst. 44, 6–7,2013

[21] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware:
Characterization and evolution." In 2012 IEEE Symposium on Security
and Privacy, pp. 95-109. IEEE, 2012.

[22] Schmidt, A-D., Rainer Bye, H-G. Schmidt, Jan Clausen, Osman Kiraz,
Kamer A. Yuksel, Seyit Ahmet Camtepe, and Sahin Albayrak. "Static
analysis of executables for collaborative malware detection on android."
In2009 IEEE International Conference on Communications, pp. 1-5.
IEEE, 2009.

[23] Aafer, Yousra, Wenliang Du, and Heng Yin. "DroidAPIMiner: Mining
API-level features for robust malware detection in android." In
International Conference on Security and Privacy in Communication
Systems, pp. 86-103. Springer International Publishing, 2013.

[24] Shabtai, Asaf, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael
Weiss. "―Andromaly‖ a behavioral malware detection framework for
android devices." Journal of Intelligent Information Systems 38, no 1,
pp.161-190, 2012.

[25] Bartel, Alexandre, Jacques Klein, Yves Le Traon, and Martin
Monperrus. "Automatically securing permission-based software by
reducing the attack surface: An application to android." In Proceedings
of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pp. 274-277. ACM, 2012.

[26] APKTool, Reverse Engineering with ApkTool, Available:
https://code.google.com/android/apk-tool

[27] A. Fei ollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, ―A review
on feature selection in mobile malware detection,‖ Digital Investigation,
vol. 13, pp. 22 – 37, 2015.

[28] S.-H. Seo, A. Gupta, A. M. Sallam, E. Bertino, and K. Yim, ―Detecting
mobile malware threats to homeland security through static analysis,‖
Journal of Network and Computer Applications, vol. 38, no. 1, pp. 43–
53, 2014.

[29] Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of
‗small-world‘networks." nature 393, no. 6684 (1998): 440-442.

[30] Mori, Tatsunori. "Information gain ratio as term weight: the case of
summarization of ir results." In Proceedings of the 19th international
conference on Computational linguistics-Volume 1, pp. 1-7. Association
for Computational Linguistics, 2002.

[31] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks."
Machine learning 20, no. 3 (1995): 273-297.

[32] Shalev-Shwartz, Shai, Yoram Singer, Nathan Srebro, and Andrew
Cotter. "Pegasos: Primal estimated sub-gradient solver for svm."
Mathematical programming 127, no. 1 ,pp. 3-30,2011.

[33] Android Malware Genome Project, 2014.
http://www.malgenomeproject.org/

[34] Abdulla, Shubair, and Altyeb Altaher. "Intelligent Approach for Android
Malware Detection." KSII Transactions on Internet and Information
Systems (TIIS) 9, no. 8, 2015.

[35] Zhou, Wu, Yajin Zhou, Xuxian Jiang, and Peng Ning. "Detecting
repackaged smartphone applications in third-party android
marketplaces." In Proceedings of the second ACM conference on Data
and Application Security and Privacy, pp. 317-326. ACM, 2012.

[36] Arp, Daniel, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and
Konrad Rieck. "DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket." In NDSS. 2014.

[37] Grace, Michael, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. "Riskranker: scalable and accurate zero-day android malware
detection." InProceedings of the 10th international conference on Mobile
systems, applications, and services, pp. 281-294. ACM, 2012.

[38] Faruki, Parvez, Vijay Laxmi, Ammar Bharmal, M. S. Gaur, and Vijay
Ganmoor. "AndroSimilar: Robust signature for detecting variants of
Android malware." Journal of Information Security and Applications ,22
pp.66-80,2015.

[39] T. Fawcett, "An introduction to ROC analysis," Pattern recognition
letters, vol. 27, pp. 861-874, 2006.

